You are currently browsing the category archive for the ‘Academic’ category.
 Deep Learning Master Class
 Advances in Variational Inference
 Numerical Optimization: Understanding LBFGS
 An exact mapping between the Variational Renormalization Group and Deep Learning
 New ASA Guidelines for Undergraduate Statistics Programs
 奇异值分解（We Recommend a Singular Value Decomposition）
 如何简单形象又有趣地讲解神经网络是什么？
 Academic vs. Industry Careers
 Hadley Wickham: Impact the world by being useful
 Statisticians in World War II: They also served
 A Brief Overview of Deep Learning
 Advice for applying Machine Learning
 Deep Learning Tutorial
 Gibbs Sampling in Haskell
 Howto go parallel in R – basics + tips
The first colloquium speaker at this semester, professor Wei Zheng from IUPUI, will give a talk on “Universally optimal designs for two interference models“. In this data explosive age, people are easy to get big data set, which renders people difficult to make inferences from such massive data. Since people usually think that with more data, they have more chance to get more useful information from them, lots of researchers are struggling to achieve methodological advancements under this setup. This is a very challenging research area and of course very important, which in my opinion needs the resurgence of mathematical statistics by borrowing great ideas from various mathematical fields. However, another great and classical statistical research area should come back again to help statistical inference procedures from the beginning stage of data analysis, collecting data by design of experiments so that we can control the data quality, usefulness and size. Thus it’s necessary for us to know what is optimal design of experiments. Here is an introduction to this interesting topic.
In statistics, we have to organize an experiment in order to gain some information about an object of interest. Fragments of this information can be obtained by making observations within some elementary experiments called trials. The set of all trials which can be incorporated in a prepared experiment will be denoted by , which we shall call the design space. The problem to be solved in experimental design is how to choose, say trials , called the support points of the design, or eventually how to choose the size of the design, to gather enough information about the object of interest. Optimum experimental design corresponds to the maximization, in some sense, of this information. In specific, the optimality of a design depends on the statistical model and is assessed with respect to a statistical criterion, which is related to the variancematrix of the estimator. Specifying an appropriate model and specifying a suitable criterion function both require understanding of statistical theory and practical knowledge with designing experiments.
We shall restrict our attention to the parametric situation in the case of a regression model, the mean response function is then parameterized as
specifying for a particular with unknown parameter .
A design is specified by an initially arbitrary measure assigning design points to estimate the parameter vector. Here can be written as
where the design support points are elements of the design space , and the associated weights are nonnegative real numbers which sum to one. We make the usual second moment error assumptions leading to the use of least squares estimates. Then the corresponding Fisher information matrix associated with is given by
where and .
Now we have to propose the statistical criteria for the optimum. It is known that the least squares estimator minimizes the variance of meanunbiased estimators (under the conditions of the Gauss–Markov theorem). In the estimation theory for statistical models with one real parameter, the reciprocal of the variance of an (“efficient”) estimator is called the “Fisher information” for that estimator. Because of this reciprocity, minimizing the variance corresponds to maximizing the information. When the statistical model has several parameters, however, the mean of the parameterestimator is a vector and its variance is a matrix. The inverse matrix of the variancematrix is called the “information matrix”. Because the variance of the estimator of a parameter vector is a matrix, the problem of “minimizing the variance” is complicated. Using statistical theory, statisticians compress the informationmatrix using realvalued summary statistics; being realvalued functions, these “information criteria” can be maximized. The traditional optimalitycriteria are invariants of the information matrix; algebraically, the traditional optimalitycriteria are functionals of the eigenvalues of the information matrix.
 Aoptimality (“average” or trace)
 One criterion is Aoptimality, which seeks to minimize the trace of the inverse of the information matrix. This criterion results in minimizing the average variance of the estimates of the regression coefficients.
 Doptimality (determinant)
 A popular criterion is Doptimality, which seeks to maximize the determinant of the information matrix of the design. This criterion results in maximizing the differential Shannon information content of the parameter estimates.
 Eoptimality (eigenvalue)
 Another design is Eoptimality, which maximizes the minimum eigenvalue of the information matrix.
 Toptimality
 This criterion maximizes the trace of the information matrix.
Other optimalitycriteria are concerned with the variance of predictions:
 Goptimality
 A popular criterion is Goptimality, which seeks to minimize the maximum entry in the diagonal of the hat matrix. This has the effect of minimizing the maximum variance of the predicted values.
 Ioptimality (integrated)
 A second criterion on prediction variance is Ioptimality, which seeks to minimize the average prediction variance over the design space.
 Voptimality (variance)
 A third criterion on prediction variance is Voptimality, which seeks to minimize the average prediction variance over a set of m specific points.
Now back to our example, because the asymptotic covariance matrix associated with the LSE of is proportional to , the most popular regression design criterion is Doptimality, where designs are sought to minimize the determinant of . And the standardized predicted variance function, corresponding to the Goptimality, is
and Goptimality seeks to minimize .
A central result in the theory of optimal design, the General Equivalence Theorem, asserts that the design that is Doptimal is also Goptimal and that
the number of parameters.
Now the optimal design for an interference model, professor Wei Zheng will talk about, considers the following model in the block designs with neighbor effects:
where is the treatment assigned to the plot in the th position of the th block, and
 is the general mean;
 is the direct effect of treatment ;
 and are respectively the left and right neighbor effects; that’s the interference effect of the treatment assigned to, respectively, the left and right neighbor plots and .
 is the effect of the th block; and
 is the random error, .
We seed the optimal design among designs , the set of all designs with blocks of size and with treatments.
I am not going into the details of the derivation of the optimal design for the above interference model. I just sketch the outline here. First of all we can write down the information matrix for the direct treatment effect , say . Let be the set of all possible block sequences with replacement, which is the design space. Then we try to find the optimal measure among the set to maximize for a given function satisfying the following three conditions:
 is concave;
 for any permutation matrix ;
 is nondecreasing in the scalar .
A measure which achieves the maximum of among for any satisfying the above three conditions is said to be universally optimal. Such measure is optimal under criteria of A, D, E, T, etc. Thus we could imagine that all of the analysis is just linear algebra.
I am graduating as a fifth year PhD student and I really agree with Professor David Karger from MIT about the qualities characterizing a great PhD student, especially about the point on “discipline and productivity”. Professor Karger also distinguished the difference between a successful PhD for industry and a successful PhD for academic. Here I just cite the whole article to share with you as well as to keep these principles in my own mind:
As a CS prof at MIT, I have had the privilege of working with some of the very best PhD students anywhere. But even here there are some PhDs that clearly stand out as *great*. I’m going to give two answers, depending on your interpretation of “great”.
For my first answer I’d select four indispensable qualities:
0. intelligence
1. curiosity
2. creativity
3. discipline and productivity
(interestingly, I’d say the same four qualities characterize great artists).
In the “nice to have but not essential” category, I would add
4. ability to teach/communicate with an audience
5. ability to communicate with peers
The primary purpose of PhD work is to advance human knowledge. Since you’re working at the edge of what we know, the material you’re working with is hard—you have to be smart enough to master it (intelligence). This is what qualifying exams are about. But you only need to be smart *enough*—I’ve met a few spectacularly brilliant PhD students, and plenty of others who were just smart enough. This didn’t really make a difference in the quality of their PhDs (though it does effect their choice of area—more of the truly brilliant go into the theoretical areas).
But intelligence is just a starting point. The first thing you actually have to *do* to advance human knowledge is ask questions about why things are the way they are and how they could be made better (curiosity). PhD students spend lots of time asking questions to which they don’t know the answer, so you’d better really enjoy this. Obviously, after you ask the questions you have to come up with the answers. And you have to be able to think in new directions to answer those questions (creativity). For if you can answer those questions using tried and true techniques, then they really aren’t research questions—they’re just things we already know for which we just haven’t gotten around to filling in the detail.
These two qualities are critical for a great PhD, but also lead to one of the most common failure modes: students who love asking questions and thinking about cool ways to answer them, but never actually *do* the work necessary to try out the answer. Instead, they flutter off to the next cool idea. So this is where discipline comes in: you need to be willing to bang your head against the wall for months (theoretician) or spend months hacking code (practitioner), in order to flesh out your creative idea and validate it. You need a longterm view that reminds you why you are doing this even when the fun parts (brainstorming and curiositysatisfying) aren’t happening.
Communication skills are really valuable but sometimes dispensable. Your work can have a lot more impact if you are able to spread it to others who can incorporate it in their work. And many times you can achieve more by collaborating with others who bring different skills and insights to a problem. On the other hand, some of the greatest work (especially theoretical work) has been done by lone figures locked in their offices who publish obscure hard to read papers; when that work is great enough, it eventually spreads into the community even if the originator isn’t trying to make it do so.
My second answer is more cynical. If you think about it, someone coming to do a PhD is entering an environment filled with people who excel at items 05 in my list. And most of those items are talents that faculty can continue to exercise as faculty, because really curiosity, creativity, and communication don’t take that much time to do well. The one place where faculty really need help is on productivity: they’re trying to advance a huge number of projects simultaneously and really don’t have the cycles to carry out the necessary work. So another way to characterize what makes a great PhD student is
0. intelligence
1. discipline and productivity
If you are off the scale in your productivity (producing code, running interviews, or working at a lab bench) and smart enough to understand the work you get asked to do, then you can be the extra pair of productive hands that the faculty member desperately needs. Your advisor can generate questions and creative ways to answer them, and you can execute. After a few years of this, they’ll thank you with a PhD.
If all you want is the PhD, this second approach is a fine one. But you should recognize that in this case that advisor is *not* going to write a recommendation letter that will get you a faculty position (though they’ll be happy to praise you to Google). There’s only 1 way to be a successful *faculty member*, and that’s my first answer above.
Update: Here is another article from Professors Mark Dredze (Johns Hopkins University) and Hanna M. Wallach (University of Massachusetts Amherst).
There has been a Machine Learning (ML) reading list of books in hacker news for a while, where Professor Michael I. Jordan recommend some books to start on ML for people who are going to devote many decades of their lives to the field, and who want to get to the research frontier fairly quickly. Recently he articulated the relationship between CS and Stats amazingly well in his recent reddit AMA, in which he also added some books that dig still further into foundational topics. I just list them here for people’s convenience and my own reference.
 Frequentist Statistics
 Casella, G. and Berger, R.L. (2001). “Statistical Inference” Duxbury Press.—Intermediatelevel statistics book.
 Ferguson, T. (1996). “A Course in Large Sample Theory” Chapman & Hall/CRC.—For a slightly more advanced book that’s quite clear on mathematical techniques.
 Lehmann, E. (2004). “Elements of LargeSample Theory” Springer.—About asymptotics which is a good starting place.
 Vaart, A.W. van der (1998). “Asymptotic Statistics” Cambridge.—A book that shows how many ideas in inference (M estimation, the bootstrap, semiparametrics, etc) repose on top of empirical process theory.
 Tsybakov, Alexandre B. (2008) “Introduction to Nonparametric Estimation” Springer.—Tools for obtaining lower bounds on estimators.
 B. Efron (2010) “LargeScale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction” Cambridge,.—A thoughtprovoking book.
 Bayesian Statistics
 Gelman, A. et al. (2003). “Bayesian Data Analysis” Chapman & Hall/CRC.—About Bayesian.
 Robert, C. and Casella, G. (2005). “Monte Carlo Statistical Methods” Springer.—about Bayesian computation.
 Probability Theory
 Grimmett, G. and Stirzaker, D. (2001). “Probability and Random Processes” Oxford.—Intermediatelevel probability book.
 Pollard, D. (2001). “A User’s Guide to Measure Theoretic Probability” Cambridge.—More advanced level probability book.
 Durrett, R. (2005). “Probability: Theory and Examples” Duxbury.—Standard advanced probability book.
 Optimization
 Bertsimas, D. and Tsitsiklis, J. (1997). “Introduction to Linear Optimization” Athena.—A good starting book on linear optimization that will prepare you for convex optimization.
 Boyd, S. and Vandenberghe, L. (2004). “Convex Optimization” Cambridge.
 Y. Nesterov and Iu E. Nesterov (2003). “Introductory Lectures on Convex Optimization” Springer.—A start to understand lower bounds in optimization.
 Linear Algebra
 Golub, G., and Van Loan, C. (1996). “Matrix Computations” Johns Hopkins.—Getting a full understanding of algorithmic linear algebra is also important.
 Information Theory
 Cover, T. and Thomas, J. “Elements of Information Theory” Wiley.—Classic information theory.
 Functional Analysis
 Kreyszig, E. (1989). “Introductory Functional Analysis with Applications” Wiley.—Functional analysis is essentially linear algebra in infinite dimensions, and it’s necessary for kernel methods, for nonparametric Bayesian methods, and for various other topics.
Remarks from Professor Jordan: “not only do I think that you should eventually read all of these books (or some similar list that reflects your own view of foundations), but I think that you should read all of them three times—the first time you barely understand, the second time you start to get it, and the third time it all seems obvious.”
In mathematics, a general principle for studying an object is always from the study of the object itself to the study of the relationship between objects. In functional data analysis, the most important part for studying of the object itself, i.e. one functional data set, is functional principal component analysis (FPCA). And for the study of the relationship between two functional data sets, one popular way is various types of regression analysis. For this post, I only focus on the FPCA. The central idea of FPCA is dimension reduction by means of a spectral decomposition of the covariance operator, which yields functional principal components as coefficient vectors to represent the random curves in the sample.
First of all, let’s define what’s the FPCA. Suppose we observe functions . We want to find an orthonormal basis such that
is minimized. Once such a basis is found, we can replace each curve by to a good approximation. This means instead of working with infinitely dimensional curves , we can work with $K$dimensional vectors . And the functions are called collectively optimal empirical orthonormal basis, or empirical functional principal components. Note that once we got the functional principal components, we can get the so called FPC scores to approximate the curves.
For FPCA, we usually adopt the so called “smoothfirstthenestimate” approach, namely,we first preprocess the discrete observations to get smoothed functional data by smoothing and then use the empirical estimators of the mean and covariance based on the smoothed functional data to conduct FPCA.
For the smoothing step, we have to consider individual by individual. For each realization, we can use basis expansion (Polynomial basis is unstable; Fourier basis is suitable for periodic functions; Bspline basis is flexible and useful), smoothing penalties (which lead to smoothing splines by the Smoothing Spline Theorem), as well as local polynomial smoothing:
 Basis expansion: by assuming one realization of the underlying true process , where are the basis functions, we have the estimation
 Smoothing penalties: , where is a measure for the roughness of functions.
 Local linear smoothing: assume at point , we have , then we have estimated by the following
Once we have the smoothed functional data, denoted as , we can have the empirical estimator of the mean and covariance as
And then we can have the empirical functional principal components as the eigenfunctions of the above sample covariance operator (for the proof, refer to the book “Inference for Functional Data with Applications” page 39). Note that the above estimation procedure of the mean function and the covariance function need to have more dense functional data, since otherwise the smoothing step will be not stable. Thus people are also proposing some other estimators of mean function and covariance function, such as the local linear estimator for the mean function and the covariance function proposed by Professor Yehua Li from ISU, which has an advantage that they can cover all types of functional data, sparse (i.e. longitudinal), dense, or inbetween. Now the problem is that how to conduct FPCA based on in practice. Actually it’s the following classic mathematical problem:
where is the integral operator with a symmetric kernel . This is a wellstudied problem in computing the eigenvalues and eigenfunctions of an integral operator with a symmetric kernel in applied mathematics. So people can refer to those numerical methods to solve the above problem.
However, two common methods used in Statistics are described in Section 8.4 in the fundamental functional data analysis book written by Professors J. O. Ramsay and B. W. Silverman. One is the discretizing method and the other is the basis function method. For the discretizing method, essentially, we just discretize the smoothed functions to a fine grid of equally spaced values that span the interval, and then use the traditional PCA, followed by some interpolation method for other points not belonging to be selected grid points. Now for the basis function method, we illustrate it by assuming the mean function equal to 0:
 Basis expansion: , and then , where and ;
 Covariance function: ;
 Eigenfunction expansion: assume the eigenfunction ;
 Problem Simplification: The above basis expansions lead to
,
where and . Hence the eigen problem boils down to , which is equivalent to
Note that the assumptions for the eigenfunctions to be orthonormal are equivalent to . Let , and then we have the above problem as
which is a traditional eigen problem for symmetric matrix .
Two special cases deserve particular attention. One is orthonormal basis which leads to . And the other is taking the smoothed functional data as the basis function which leads to .
Note that the empirical functional principal components are proved to be the eigenfunctions of the sample covariance operator. This fact connects the FPCA with the so called KarhunenLove expansion:
where are uncorrelated random variables with mean 0 and variance $\lambda_k$ where . For simplicity we assume . Then we can easily see the connection between KL expansion and FPCA. is the series of orthonormal basis functions, and are those FPC scores.
So far, we only have discussed how to get the empirical functional principal components, i.e. eigenfunctions/orthonormal basis functions. But to represent the functional data, we have to get those coefficients, which are called FPC scores . The simplest way is by numerical integration:
Note that for the above estimation of the FPC scores via numerical integration, we first need the smoothed functional data . So if we only have sparsely observed functional data, this method will not provide reasonable approximations. Professor Fang Yao et al. proposed the so called PACE (principal component analysis through conditional expectation) to deal with such longitudinal data.
Degrees of freedom and information criteria are two fundamental concepts in statistical modeling, which are also taught in introductory statistics courses. But what are the exact abstract definitions for them which can be used to derive specific calculation formula in different situations.
I often use fit criteria like AIC and BIC to choose between models. I know that they try to balance good fit with parsimony, but beyond that I’m not sure what exactly they mean. What are they really doing? Which is better? What does it mean if they disagree? — Signed, Adrift on the IC’s
Intuitively, the degrees of freedom of a fitting procedure reflects the effective number of parameters used by the fitting procedure. Thus to most applied statisticians, a fitting procedure’s degrees of freedom is synonymous with its model complexity, or its capacity for overfitting to data. Is this really true? Regularization aims to improve prediction performance by trading an increase in training error for better agreement between training and prediction errors, which is often captured through decreased degrees of freedom. Is this always the case? When does more regularization imply fewer degrees of freedom?
For the above two questions, I think the most important thing is based on the following whattype question:
What are AIC and BIC? What is degrees of freedom?
Akaike’s Information Criterion (AIC) estimates the relative KullbackLeibler (KL) distance of the likelihood function specified by a fitted candidate model, from the unknown true likelihood function that generated the data:
where is the likelihood function specified by a fitted candidate model, is the unknown true likelihood function, and the expectation is taking under the true model. Note that the fitted model closest to the truth in the KL sense would not necessarily be the model which best fits the observed sample since the observed sample can often be fit arbitrary well by making the model more and more complex. Since will be the same for all models being considered, KL is minimized by choosing the model with highest , which can be estimated by an approximately unbiased estimator (up to a constant)
where is an estimator for the covariance matrix of the parameters based on the second derivatives matrix of in the parameters and is an estimator based on the cross products of the first derivatives. Akaike showed that and are asymptotically equal for the true model, so that , which is the number of parameters. This results in the usual definition for AIC
Schwarz’s Bayesian Information Criterion (BIC) is just comparing the posterior probability with the same prior and hence just comparing the likelihoods under different models:
which is just the Bayes factor. Schwarz showed that in many kinds of models can be roughly approximated by
which leads to the definition of BIC
In summary, AIC and BIC are both penalizedlikelihood criteria. AIC is an estimate of a constant plus the relative distance between the unknown true likelihood function of the data and the fitted likelihood function of the model, so that a lower AIC means a model is considered to be closer to the truth. BIC is an estimate of a function of the posterior probability of a model being true, under a certain Bayesian setup, so that a lower BIC means that a model is considered to be more likely to be the true model. Both criteria are based on various assumptions and asymptotic approximations. Despite various subtle theoretical differences, their only difference in practice is the size of the penalty; BIC penalizes model complexity more heavily. The only way they should disagree is when AIC chooses a larger model than BIC. Thus, AIC always has a chance of choosing too big a model, regardless of n. BIC has very little chance of choosing too big a model if n is sufficient, but it has a larger chance than AIC, for any given n, of choosing too small a model.
The effective degrees of freedom for an arbitrary modelling approach is defined based on the concept of expected optimism:
where is the variance of the error term, is an independent copy of data vector with mean , and is a fitting procedure with tuning parameter . Note that the expected optimism is defined as . And by the optimism theorem, we have that
Why does this definition make sense? In fact, under some regularity conditions, Stein proved that
which can be regarded as a sensitivity measure of the fitted values to the observations.
In the linear model, we know that (Mallows) the relationship between the expected prediction error (EPE) and the residual sum of squares (RSS) follows
which leads to .
Here are some references on this topic:

Dziak, John J., et al. “Sensitivity and specificity of information criteria.” The Methodology Center and Department of Statistics, Penn State, The Pennsylvania State University (2012).

Janson, Lucas, Will Fithian, and Trevor Hastie. “Effective degrees of freedom: A flawed metaphor.” arXiv preprint arXiv:1312.7851 (2013).
 Tutorial: How to detect spurious correlations, and how to find the …
 Practical illustration of MapReduce (Hadoopstyle), on real data
 Jackknife logistic and linear regression for clustering and predict…
 From the trenches: 360degrees data science
 A synthetic variance designed for Hadoop and big data
 Fast Combinatorial Feature Selection with New Definition of Predict…
 A little known component that should be part of most data science a…
 11 Features any database, SQL or NoSQL, should have
 Clustering idea for very large datasets
 Hidden decision trees revisited
 Correlation and RSquared for Big Data
 Marrying computer science, statistics and domain expertize
 New pattern to predict stock prices, multiplies return by factor 5
 What Map Reduce can’t do
 Excel for Big Data
 Fast clustering algorithms for massive datasets
 Source code for our Big Data keyword correlation API
 The curse of big data
 How to detect a pattern? Problem and solution
 Interesting Data Science Application: Steganography
 Easily create documents from R with Rmarkdown
 How to publish R and ggplot2 to the web
 magrittr: Simplifying R code with pipes
 Updated dplyr Examples
 Video introduction to data manipulation with dplyr
 R and Data Science
 jiebaR中文分词——R的灵活，C的效率
 Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
 41 hours of courses given in Iceland this Summer at the Machine Learning Summer School.
 summary of parallel machine learning approaches
 big data and data science talks
On this Tuesday, Professor Xuming He presented their recent work on subgroup analysis, which is very interesting and useful in reality. Think about the following very much practical problem (since the drug is expensive or has certain amount of side effect):
If you are given the drug response, some baseline covariates which have nothing to do with the treatment, and the treatment indicator as well as some posttreatment measurements, how could you come up with a statistical model to tell whether there exist subgroups which respond to the treatment differently?
Think about 5 minutes and continue the following!
Dr He borrowed a very traditional model in Statistics, logisticnormal mixture model to study the above problem. The existence of the two subgroups is characterized by the observed baseline covariates, which have nothing to do with the treatment:
where is the unobserved membership index. And the observed response follows a normal mixture model
with different means and , where usually contains but also includes the treatment indicator as well as any posttreatment measurements. Given that there is two subgroups characterized by the baseline covariates (which makes the test problem regular), they tried to test whether the two groups respond to the treatment differently, that is testing the component of which corresponds to the treatment indicator.
Nice work to demonstrate how to come up with a statistical model to study some interesting and practical problems!
But the above part has nothing to do with the title, EM algorithm. Actually you could imagine that they will use EM as a basic tool to study the above mixture model. That’s why I came back to revisit this great idea in Statistics.
Given complete random vector with observed and unobserved, we have the likelihood function . Then the log marginal likelihood has the following property:
where the last inequality is from Jensen’s inequality, and is any density function put on . In order to make the bound tight, i.e. to make the above inequality as equality, one possible way is , which leads to
Then we have
In summary, we have the following EM procedure:
 E step: get the conditional distribution ;
 M step:
And the corresponding EM algorithm can be described as the following iterative procedure:
 E step: get the conditional distribution ;
 M step:
In order to make this procedure effective, in the M step, the condition expectation should be easy to calculate. In fact, usually, since the expectation will be taken under the current , which will not produce any new , we usually get first and then by plugging we have .
And this procedure guarantees the following to make sure the convergence
In summary, EM algorithm is useful when the marginal problem is difficult while the joint problem is easy. However is unobservable, and the EM algorithm attempts to maximize iteratively, by replacing it with its conditional expectation given the observed data. This expectation is computed with respect to the distribution of the complete data evaluated at the current estimate of .
In the talk given by Professor Xuming He, he mentioned a rule of thumb from practice experience that the EM algorithm produces a good enough estimator in the first few steps.
Last night, I had a discussion about the integrative data analysis (closely related with the discussion of AOAS 2014 paper from Dr Xihong Lin’s group and JASA 2014 paper from Dr. Hongzhe Li’s group) with my friend. If some biologist gave you the genetic variants (e.g. SNP) data and the phenotype (e.g. some trait) data, you were asked to do the association analysis to identify the genetic variants which is significantly associated with the trait. One year later, the biologist got some additional data such as gene expression data which are related with the two data sets given before, and you are now asked to calibrate your analysis to detect the association more efficiently and powerfully by integrating the three data sources. In this data rich age, it’s quite natural to get into this situation in practice. The question is how to come up with a natural and useful statistical framework to deal with such data integration.
For simplicity, we considered the problem that if you are first given two random variables, to study the association between them. Later on you are given another random variable to help to detect the significance association between and . We assume the following true model:
where is independent with . Now the question is what is the characteristic for to be helpful to raise the power for the detection.
 What if and are uncorrelated? If they are uncorrelated, then what if and are uncorrelated?
 What if and are correlated?
After thinking about these, you will find that for to be useful, it’s ideal that is uncorrelated with and is highly correlated with , i.e. highly correlated with the error term so that it can be used to explain more variation contained in to reduce the noise level.
In order to see why, first notice that the problem exactly depends on how to understand the following multiple linear regression problem:
Now from the multiple linear regression knowledge, we have
where (see below for the proof). Thus in order to raise the signal to noise ratio, we hope that , i.e. or , which can keep the signal large. But in order to reduce the noise, we need . In summary, we need to have , which means that and are uncorrelated, and , which means that can be used to explain some variability contained in the noise.
Now please think about the question:
What is the difference between doing univariate regression one by one and doing multiple linear regression all at once?
Here is some hint: first we regress and both onto ,
And then on one hand we find that , and on the other hand we regress the residual onto the residual to get via
This procedure actually is explaining what is the multiple linear regression and what is the meaning for the coefficients (think about the meaning of from the above explanation).
pvalue and Bayes are the two hottest words in Statistics. Actually I still can not get why the debate between frequentist statistics and Bayesian statistics can last so long. What is the essence arguments behind it? (Any one can help me with this?) In my point of view, they are just two ways for solving practical problems. Frequentist people are using the random version of proofbycontradiction argument (i.e. small pvalue indicates less likeliness for the null hypothesis to be true), while Bayesian people are using learning argument to update their believes through data. Besides, mathematician are using partial differential equations (PDE) to model the real underlying process for the analysis. These are just different methodologies for dealing with practical problems. What’s the point for the longlast debate between frequentist statistics and Bayesian statistics then?
Although my current research area is mostly in frequentist statistics domain, I am becoming more and more Bayesian lover, since it’s so natural. When I was teaching introductory statistics courses for undergraduate students at Michigan State University, I divided the whole course into three parts: Exploratory Data Analysis (EDA) by using R software, Bayesian Reasoning and Frequentist Statistics. I found that at the end of the semester, the most impressive example in my students mind was the one from the second section (Bayesian Reasoning). That is the Monty Hall problem, which was mentioned in the article that just came out in the NYT. (Note that about the argument from Professor Andrew Gelman, please also check out the response from Professor Gelman.) “Mr. Hall, longtime host of the game show “Let’s Make a Deal,” hides a car behind one of three doors and a goat behind each of the other two. The contestant picks Door No. 1, but before opening it, Mr. Hall opens Door No. 2 to reveal a goat. Should the contestant stick with No. 1 or switch to No. 3, or does it matter?” And the Bayesian approach to this problem “would start with onethird odds that any given door hides the car, then update that knowledge with the new data: Door No. 2 had a goat. The odds that the contestant guessed right — that the car is behind No. 1 — remain one in three. Thus, the odds that she guessed wrong are two in three. And if she guessed wrong, the car must be behind Door No. 3. So she should indeed switch.” What a natural argument! Bayesian babies and Google untrained search for youtube cats (the methods of deep learning) are all excellent examples proving that Bayesian Statistics IS a remarkable way for solving problems.
What about the pvalues? This random version of proofbycontradiction argument is also a great way for solving problems from the fact that it have been helping solve so many problems from various scientific areas, especially in bioworld. Check out today’s post from Simply Statistics: “You think Pvalues are bad? I say show me the data,” and also the early one: On the scalability of statistical procedures: why the pvalue bashers just don’t get it.
The classical pvalue does exactly what it says. But it is a statement about what would happen if there were no true effect. That can’t tell you about your longterm probability of making a fool of yourself, simply because sometimes there really is an effect. You make a fool of yourself if you declare that you have discovered something, when all you are observing is random chance. From this point of view, what matters is the probability that, when you find that a result is “statistically significant”, there is actually a real effect. If you find a “significant” result when there is nothing but chance at play, your result is a false positive, and the chance of getting a false positive is often alarmingly high. This probability will be called “false discovery rate” (or error rate), which is different with the concept in the multiple comparison. One possible misinterpretation of pvalue is regarding pvalue as the false discovery rate, which may be much higher than pvalue. Think about the Bayes formula and the tree diagram you learned in introductory course to statistics to figure out the relationship between pvalue and the “false discovery rate”.
Recent Comments