There will be a talk,  “Landscape of Random Functions in Many Dimensions via Random Matrix Theory”, next week given by  Antonio Auffinger from the University of Chicago.
Abstract: How many critical values a typical Morse function have on a high dimensional manifold? Could we say anything about the topology of its level sets? In this talk I will survey a joint work with Gerard Ben Arous and Jiri Cerny that addresses these questions in a particular but fundamental example. We investigate the landscape of a general Gaussian random smooth function on the N-dimensional sphere. These corresponds to Hamiltonians of well-known models of statistical physics, i.e spherical spin glasses. Using the classical Kac-Rice formula, this counting boils down to a problem in Random Matrix Theory. This allows us to show an interesting picture for the complexity of these random Hamiltonians, for the bottom of the energy landscape, and in particular a strong correlation between the index and the critical value. We also propose a new invariant for the possible transition between the so-called 1-step replica symmetry breaking and a Full Replica symmetry breaking scheme and show how the complexity function is related to the Parisi functional.
This topic is kind of a combination of my majors, differential geometry, probability and statistics. I am interested in this although I can imagine that it is hard.